Exercice 4: Phil-harmonie

Partie A

- 1. Moyenne harmonique et division harmonique
 - a. Moyenne harmonique des nombres 1, 2, 3 et 6

$$MH(1;2;3;6) = \frac{4}{\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{6}} = 2 \text{ donc } MH(1;2;3;6) = 2$$

b. 6 en division harmonique?

Diviseurs de 6 : {1; 2; 3; 6}

$$MH(1;2;3;6) = 2 \in \mathbb{N}$$
 donc 6 est en division harmonique

c. Soit n un entier naturel non nul.

On pose
$$D(n) = \{a_1; a_2; ...; a_k\}$$

Alors $ND(n) = k$
Et $SID(n) = \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_k}$
 $n \text{ en division harmonique} \iff MH(a_1; a_2; ...; a_k) \in \mathbb{N} \iff \frac{ND(n)}{SID(n)} \in \mathbb{N}$

- 2. <u>Soit n un entier naturel non nul</u>
 - a. Pour n=25

$$D(25) = \{1; 5; 25\}; SID(25) = \frac{1}{1} + \frac{1}{5} + \frac{1}{25} = \frac{25+5+1}{25} = \frac{SD(25)}{25}$$

Donc $25 \times SID(25) = SD(25)$

Pour n=35

$$D(35) = \{1; 5; 7; 35\}; SID(35) = \frac{1}{1} + \frac{1}{5} + \frac{1}{7} + \frac{1}{35} = \frac{35+7+5+1}{25} = \frac{SD(35)}{35}$$
Donc $35 \times SID(35) = SD(35)$

b. Soit n un entier naturel non nul et $D(n) = \{a_1; a_2; ...; a_k\}$ avec les diviseurs a_i rangés dans l'ordre croissant.

Sauf, éventuellement pour le diviseur \sqrt{n} s'il est entier, les diviseurs fonctionnent par paires sur lesquelles on a $a_i \times a_{k-i} = n$ d'où $n \times \left(\frac{1}{a_i} + \frac{1}{a_{k-i}}\right) = \frac{n}{a_i} + \frac{n}{a_{k-i}} = a_{k-i} + a_i$.

Pour le diviseur \sqrt{n} s'il est entier, on a $n \times \frac{1}{\sqrt{n}} = \sqrt{n}$.

En sommant tous les termes, on obtient $n \times \left(\frac{1}{a_1} + \dots + \frac{1}{a_k}\right) = \frac{n}{a_1} + \dots + \frac{n}{a_k} = a_k + \dots + a_1$. Soit $n \times SID(n) = SD(n)$.

c. Soit n un entier naturel non nul, on en déduit, d'après le 1)c) et le 2)b) que :
$$n$$
 en division harmonique $\Leftrightarrow \frac{ND(n)}{SID(n)} \in \mathbb{N} \Leftrightarrow \frac{ND(n)}{\frac{SD(n)}{SD(n)}} = \frac{n \times ND(n)}{\frac{SD(n)}{SD(n)}} \in \mathbb{N}$

d. 28 et 32 en division harmonique?

$$D(28) = \{1; 2; 4; 7; 14; 28\}$$

 $ND(28) = 6$
 $n \times ND(28) = 28 \times 6 = 168$
 $SD(28) = 56$
 $\frac{n \times ND(28)}{SD(28)} = \frac{168}{56} = 3 \in \mathbb{N} \text{ donc } 28 \text{ est en division harmonique}$

$$D(32) = \{1; 2; 4; 8; 16; 32\}$$

 $ND(32) = 6$
 $n \times ND(32) = 32 \times 6 = 192$
 $SD(32) = 63$
 $\frac{n \times ND(32)}{SD(32)} = \frac{192}{63} \notin \mathbb{N} \text{ donc } \boxed{32 \text{ n'est pas en division harmonique}}$

Partie B

1. Pour tout entier naturel n non nul, $p_n = 2^{n+1} - 1$

Pour
$$n = 1$$
, $p_1 = 2^2 - 1 = 3$ est un nombre premier

Pour
$$n = 2$$
, $p_2 = 2^3 - 1 = 7$ est un nombre premier

Pour
$$n = 3 p_3 = 2^4 - 1 = 15$$
 n'est pas un nombre premier

Pour
$$n = 4$$
, $p_4 = 2^5 - 1 = 31$ est un nombre premier

Pour
$$n = 5$$
, $p_5 = 2^6 - 1 = 63$ n'est pas un nombre premier

2. Pour tout entier naturel n non nul, $q_n = 2^n p_n$

Pour
$$n = 1$$
, $q_1 = 2^1 p_1 = 6$ est en division harmonique

Pour
$$n = 2$$
, $q_2 = 2^2 p_2 = 28$ est en division harmonique

Pour
$$n = 3$$
, $q_3 = 2^3 p_3 = 120$ n'est pas en division harmonique car $\frac{120 \times ND(120)}{SD(120)} = \frac{120 \times 16}{360} = \frac{16}{3} \notin \mathbb{N}$

$$D(120) = D(2^3 \times 15) = D(2^3 \times 3 \times 5) = \{1; 2; 4; 8; 3; 6; 12; 24; 5; 10; 20; 40; 15; 30; 60; 120\}$$

$$D(120) = D(2^{3} \times 15) = D(2^{3} \times 3 \times 5) = \{1; 2; 4; 8; 3; 6; 12; 24; 5; 10; 20; 40; 15; 30; 60; 120\}$$
Pour $n = 4$, $q_{1} = 2^{4}p_{4} = 496$ est en division harmonique car $\frac{496 \times ND(496)}{SD(496)} = \frac{496 \times 10}{992} = 5 \in \mathbb{N}$

$$D(496) = D(2^4 \times 31) = \{1; 2; 4; 8; 16; 31; 62; 124; 248; 496\}$$

Pour
$$n = 5$$
, $q_5 = 2^5 p_5 = 2016$ n'est pas en division harmoniq car $\frac{2016 \times ND(2016)}{SD(2016)} = \frac{2016 \times 36}{6552} = \frac{144}{13} \notin \mathbb{N}$

3. Conjecture

Pour tout entier naturel *n* non nul

si
$$p_n = 2^{n+1} - 1$$
 est un nombre premier alors $q_n = 2^n p_n$ est en division harmonique.

Soit entier naturel n non nul tel que $p_n = 2^{n+1} - 1$ soit un nombre premier

1. Déterminer $D(p_n)$ et $D(q_n)$

$$D(p_n) = \{1; p_n\}$$

$$q_n = 2^n p_n \text{ Donc } D(q_n) = \{1; 2; 2^2; 2^3; ...; 2^n, p_n; 2^2 p_n; 2^3 p_n; ...; 2^n p_n\}$$

 $D'où ND(q_n) = 2(n+1)$

2. Somme des termes de la suite géométrique de raison 2 et de premier terme 1 $1 + 2 + 2^2 + \dots + 2^n = \frac{1 - 2^{n+1}}{1 - 2} = 2^{n+1} - 1.$

$$1 + 2 + 2^2 + \dots + 2^n = \frac{1 - 2^{n+1}}{1 - 2} = 2^{n+1} - 1$$

3. Montrer que q_n est en division harmonique

$$\overline{ND(q_n) = 2(n+1)}$$

$$SD(q_n) = \sum_{k=0}^{n} 2^k + p_n \sum_{k=0}^{n} 2^k = (1+p_n) \sum_{k=0}^{n} 2^k = (1+p_n)(2^{n+1}-1) = (1+p_n)p_n$$

$$\frac{q_n \times ND(q_n)}{SD(q_n)} = \frac{2^n p_n \times 2(n+1)}{(1+p_n)p_n} = \frac{2^{n+1}(n+1)}{1+p_n} = \frac{2^{n+1}(n+1)}{2^{n+1}} = n+1 \in \mathbb{N}$$

Conclusion

Pour tout entier naturel n non nul si p_n est un nombre premier alors q_n est en division harmonique.